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Abstract
What are the computational foundations of social grouping?
Traditional approaches to this question have focused on verbal
reasoning or simple (low-dimensional) quantitative models. In
the real world, however, social preferences emerge when
high-dimensional learning systems (brains and bodies) interact
with high-dimensional sensory inputs during an animal’s
embodied interactions with the world. A deep understanding of
social grouping will therefore require embodied models that
learn directly from sensory inputs using high-dimensional
learning mechanisms. To this end, we built artificial neural
networks (ANNs), embodied those ANNs in virtual fish bodies,
and raised the artificial fish in virtual fish tanks that mimicked
the rearing conditions of real fish. We then compared the social
preferences that emerged in real fish versus artificial fish. We
found that when artificial fish had two core learning
mechanisms (reinforcement learning and curiosity-driven
learning), artificial fish developed fish-like social preferences.
Like real fish, the artificial fish spontaneously learned to prefer
members of their own group over members of other groups. The
artificial fish also spontaneously learned to self-segregate with
their in-group, akin to self-segregation behavior seen in nature.
Our results suggest that social grouping can emerge from three
ingredients: (1) reinforcement learning, (2) intrinsic motivation,
and (3) early social experiences with in-group members. This
approach lays a foundation for reverse engineering animal-like
social behavior with image-computable models, bridging the
divide between high-dimensional sensory inputs and social
preferences.
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Introduction
Social preferences are widespread across the animal

kingdom. Individuals spontaneously organize into social
groups, including bird blocks, fish shoals, insect swarms,
and human crowds. Many animals, including humans,
develop social preferences early in life, rapidly learning to
favor “us” over “them” during social interactions (e.g.,
Al-Imari & Gerlai 2008; Engeszer et al. 2004; Kinzler et.
al., 2007; Molenberghs, 2013). What are the origins of such
social preferences? Despite significant interest in social
preferences across psychology and neuroscience, we know
relatively little about the core learning mechanisms that
drive social preferences in human and nonhuman animals.
What is the nature of the learning mechanisms—present in
newborn animals—that cause social preferences to emerge
so rapidly and flexibility?

It has not generally been possible to address this question
because the field lacked experimental platforms for directly
comparing the development of social preferences across
newborn animals and computational models formalizing

candidate learning algorithms. As a result, researchers could
not test whether particular algorithms can actually learn
animal-like social preferences. To evaluate whether a
computational model learns like a newborn animal, we
argue that an experimental platform must have two features.
First, the animals and models must be raised in the same
environments. This is essential because social preferences
emerge both from the learning algorithms and the training
data (experiences) acquired by the agent. Any observed
differences in social preferences across animals and models
could be due to differences in the algorithms, training data,
or some combination of the two factors. Thus, evaluating
whether computational models learn like animals requires
‘raising’ models in the same environments as newborn
animals, giving the models and animals access to the same
training data. Second, the animals and models must be
tested with the same tasks. Psychologists have long
recognized that preference behavior is task-dependent. To
confirm that animals and models learned the same social
preferences, the animals and models must be tested with the
same tasks, thereby ensuring that any observed differences
across the animals and models are not due to differences in
the tasks themselves.

Here we introduce “digital twin” experiments that meet
both requirements, allowing newborn animals and artificial
animals (embodied learning algorithms) to be raised in the
same environments and tested with the same tasks. Digital
twin experiments involve first selecting a target animal
study, and then creating digital twins (virtual replicas) of the
animal environments in a video game engine. Artificial
animals are then raised and tested in those virtual
environments and their behavior is compared with the
behavior of the real animals in the target study. By raising
and testing real and artificial animals in the same
environments, we can test whether animals and models
spontaneously learn common social preferences.

As a starting point, we focused on the social preferences
of newborn fish. We chose fish because they can be reared
in controlled visual environments, are mobile on the first
day after hatching, and rapidly learn social preferences
based on visual information (Engeszer et al., 2004; Geng &
Peterson, 2019; Hinz & de Polavieja, 2017; Ogi et al., 2021;
Tallafuss & Bally-Cuif, 2003). For the target animal study,
we focused on Engeszer et al. (2004). In the study,
newly-hatched zebrafish (Danio rerio) were reared for
several months in controlled visual environments that



Figure 1. Experimental Design. (A) Rearing conditions of the artificial fish. Each group (orange & blue) was reared in a
small white virtual cup—akin to the rearing conditions from Engeszer et al. (2004). (B) Testing conditions of the artificial
fish. We tested the fish in two tasks. In Experiment 1, we used the 2AFC task from the target animal study (Engeszer et al.,
2004). In Experiment 2, we used a self-segregation task that measured whether the fish spontaneously group into “us”
versus “them” during social interactions. (C) The artificial neural network used in the artificial fish. The blue boxes denote
visual encoders (CNNs), the green box denotes the curiosity module (intrinsic reward), and the orange box denotes the
policy network used to select actions.

contained social partners (other fish) with one of two
possible pigment types. Once the fish had been reared with
social partners of one pigment type, the researchers used a
two-alternative forced-choice (2AFC) task to test whether
the fish had developed a preference for the familiar pigment
type over the novel pigment type. The fish developed a
strong preference for the familiar pigment type over the
novel pigment type – independently of the fishes’ own
pigment type. This experiment thus reveals an important
role of visual learning in the development of social
preferences. To explore which learning algorithms can drive
these early-emerging social preferences, we performed two
experiments with artificial fish whose behavior was learned
through intrinsically motivated reinforcement learning.

Experiment 1: 2AFC Task
We first explored whether artificial fish learn similar

social preferences as real fish when they are reared in the
same environments and tested with the same task. To match
the 2AFC testing conditions of the fish in Engeszer et al.
(2004), we tested the artificial fish in virtual fish tanks that
mimicked the real fish tank proportions (Figure 1).

To develop fish-like social preferences, the artificial fish
needed to spontaneously learn to prefer other social agents,
in the absence of explicit rewards or supervision. The
artificial fish also needed to learn how to move through
space, developing knowledge of their location and direction
(ego-motion) so that they could navigate to their preferred

social group. None of these abilities (ego-motion nor social
preferences) were hardcoded into the artificial fish.

Methods
Using a video game engine (Unity), we raised (trained)

artificial fish in realistic virtual environments akin to the
fish tanks described in Engeszer et al. (2004). Due to its
flexibility and power, Unity is an ideal testbed for AI
simulation. In particular, Unity’s development team actively
supports a package known as ‘ML-Agents Toolkit’ (Juliani
et al., 2018), which allows researchers to train artificial
agents in virtual worlds. We used the Unity ML-Agents
Package version 2.0.1 with Python 3.8.10 and the Python
mlagents library version 0.26.0.
Artificial Fish. Real fish learn from raw sensory inputs

and perform actions in 3D environments, driven by
self-supervised learning objectives. Thus, to directly
compare the real and artificial fish, we used
‘pixels-to-actions’ artificial fish that learn from raw sensory
inputs and perform actions in 3D environments, driven by
self-supervised learning objectives (intrinsic motivation).

We generated the artificial fish by embodying
self-supervised learning algorithms in virtual animated fish
bodies. The fish bodies measured 1.2 units (length) by 0.7
units (height) and the fish received visual input through an
invisible forward-facing camera attached to its head (64×64
pixel resolution). The artificial fish could move themselves
around the 3D environment by moving either forward, left,



or right on every step. The plane of motion was restricted to
a single flat plane in order to mimic the action space of a
thin, shallow, layer of water commonly used in zebrafish
research to prevent motion along the height axis.

To construct the artificial fish brains (Figure 1C), we used
two biologically-inspired learning mechanisms: (a) deep
reinforcement learning and (b) curiosity-driven learning.
Deep reinforcement learning provides a computational
framework for learning adaptive behaviors from
high-dimensional sensory inputs. In reinforcement learning,
agents maximize their long-term rewards by performing
actions in response to their environment and internal state.
To succeed in environments with real-world complexity,
agents must learn abstract and generalizable features to
represent the environment. Deep reinforcement learning
combines reinforcement learning with deep neural networks
in order to transform raw sensory inputs into efficient
representations that support adaptive behavior. Artificial
agents trained through deep reinforcement learning can
develop human and animal abilities. For example, artificial
agents can learn to play simple and complex video games
(e.g., Atari: Mnih et al., 2015; Quake III: Jaderberg et al.,
2019), develop advanced motor behaviors (e.g., walking,
running, and jumping: Haarnaja et al., 2019), and learn to
navigate 3D environments (Banino et al., 2018). We used a
standard reinforcement learning algorithm called Proximal
Policy Optimization (PPO) (Schulman et al., 2017).

The second mechanism—curiosity-driven learning—can
drive the development of complex behaviors through
self-supervised learning objectives (e.g., Haber et al., 2018;
Oudeyer & Smith, 2016; Schmidhuber, 2010). Curiosity is a
popular approach for endowing artificial agents with
intrinsic motivation and involves rewarding agents based on
how surprised they are by the world. Curiosity promotes
learning by motivating agents to seek out informative
experiences. By seeking out less predictable (and more
informative) experiences, agents can gradually expand their
knowledge of the world, continuously acquiring useful
experiences for improving perception and cognition. This
type of self-supervised learning is thought to resemble
learning in real animals, who often learn about the world not
by pursuing any specific goal, but rather by playing and
exploring for the novelty of the experience (Gopnik et al.,
2017).

We implemented curiosity-driven learning using a popular
algorithm called Intrinsic Curiosity Module (ICM) (Pathak
et al., 2017; Burda et al., 2018). The ICM module contains
two separate neural networks: a forward and an inverse
model. The inverse model is trained to take the current and
next visual observation received by the agent, encode both
observations using a single encoder, and use the result to
predict the action that was taken between the two
observations. The forward model is then trained to take the
encoded current observation and action to predict the
encoded next observation. The difference between the
predicted and real encodings is then used as the intrinsic

reward, and fed to the PPO algorithm. Bigger differences
mean bigger surprise, which in turn means bigger intrinsic
reward. By linking these two models together, the reward
captures not only surprising things, but surprising things that
the agent has control over (based on the agent’s actions).
This artificial curiosity allows machines to be trained
without any extrinsic rewards from the environment, with
learning driven entirely by intrinsic motivation signals.

We used an off-the-shelf ICM algorithm implemented in
ML-Agents. ML-Agents allows artificial agents to be
configured according to several hyperparameters, including
the learning policy, the learning rate, and other common
neural network configuration settings (e.g. batch size, layer
width, etc.). We used the hyperparameters listed in Table 1.
All of the artificial fish had the same network architecture:
2-layer CNN connected to a multilayer perceptron (see
Table 1 for hyperparameters).

Table 1: ML Agents Trainer configuration.

trainer_type: ppo reward_signals: curiosity

num_layers: 3 num_layers: 3

hidden_units: 512 hidden_units: 128

learning_rate: 0.0003 learning_rate: 0.0003

batch_size: 256 strength: 1.0

buffer_size: 2048 gamma: 0.99

beta: 0.01 vis_encode_type: simple (2-layer CNN)

epsilon: 0.2 normalize: false

lambd: 0.95 max_steps: 1000000

learning_rate_schedule: linear time_horizon: 128

Rearing Conditions. To simulate the rearing conditions
of real fish, we created two groups of differently-pigmented
artificial fish: four blue fish and four orange fish. The
orange fish were reared together in one group, and the blue
fish were reared together in a separate group. Each group
was reared in a small white virtual cup—akin to the rearing
conditions from Engeszer et al. (2004).

During training (Figure 1A), the artificial fish experienced
1,000 training episodes. At the beginning of each episode,
the fish were spawned at the center of the environment and
rotated in a random direction. Each episode lasted for 1,000
actions (‘steps’) in the environment. The artificial fish were
provided with a 140° field of view and could take one full
action on every frame of the simulation. One full action was
the result of two discrete movement sets: (a) [forward or
stay] and (b) [rotate left, rotate right, or no rotation]. For
example, an agent might decide to move [forward] + [left]
on one frame, and then move [forward] + [no rotation] on
the next frame. A sharp right turn would then be the result
of [stay] + [rotate right] for several frames. Each rotation
was ~2 degrees of rotation along the Y-axis per step.



Figure 2. (A) Results on the 2AFC task. On the group level, the fish reared in the orange group spent more time with
orange fish versus blue fish, and the fish reared in the blue group spent more time with blue fish versus orange fish. On the
individual level, all of the artificial fish developed statistically significant social preferences for in-group members. The
black dashed line denotes chance performance, and the red line denotes the fish performance from Engeszer et al. (2004).
(B) Results on the self-segregation task. On the group level, the fish reared in the orange group self-segregated with orange
fish versus blue fish, and the fish reared in the blue group self-segregated with blue fish versus orange fish. On the
individual level, all eight of the artificial fish were more likely to self-segregate with in-group members. Lighter colors
indicate smaller distances between fish. Significance levels are indicated: (*p ≤ .05, **p ≤ .01, ***p ≤ .001).

All of the artificial fish had the same learning algorithms,
hyperparameters, and network architectures. However, each
artificial fish started with a different random initialization of
connection weights, and each fish’s connection weights
were shaped by its own particular experiences during the
training phase. The artificial fish were trained for 1 million
time steps, using a rack of eight NVIDIA A10 GPUs on a
single Linux server environment.
Testing Conditions. After the training phase, the brain

weights of the artificial fish were frozen for the test phase
(i.e., the algorithms did not receive any rewards during the
test phase and learning was discontinued). To mimic the
testing conditions of the real fish, we tested the artificial fish
using a 2AFC task (Figure 1B). Each of the eight artificial
fish agents were tested separately across 1,000 test trials. At
the start of each test trial, the test fish was placed in the
center of the chamber in a random orientation. The chamber
contained two shoaling groups (n = 11 fish): one group had
a familiar pigment type (i.e., “orange” for fish reared in the
orange group and “blue” for fish reared in the blue group),
while the other group had a novel pigment type (i.e.,
“orange” for fish reared in the blue group and “blue” for fish
reared in the orange group).

The fish in the two shoals generated the same swimming
motion as the fish in the training phase. However, the

shoaling fish remained in a stationary configuration across
the test trials to prevent the movements of the shoaling fish
from influencing the behavior of the focal (test) fish. As a
result, the behavior of the fish in the blue and orange groups
were identical. Each test trial consisted of 3,000 actions
(‘steps’). At every time step, we recorded the position of the
test fish in (X, Y) coordinates. As with the real fish, we
measured the proportion of time that the artificial fish spent
in proximity to the group with the familiar pigment type
versus the novel pigment type (measured as the distance to
the center of the shoal).

Results & Discussion
Group performance. Figure 2A shows the social

preferences of the artificial fish. On the group level, the
artificial fish spent significantly more time near the group
with the familiar pigment type versus the novel pigment
type (t(7) = 5.27, p < .00001). On average, the group spent
85.9% (SEM = 8%) of their time with in-group versus
out-group fish (chance = 50%), indicating that artificial fish
can develop fish-like social preferences when reared in
similar environments as real fish.
Individual-subject performance. Since we collected a

large number of test trials from each artificial fish, we also
explored whether individual differences emerged across the



fish. To test for the presence of individual differences, we
examined whether the identity of the subject was a predictor
of social grouping behavior. A one-way ANOVA showed
that the identity of the subject was a strong predictor of
performance: F(7, 999) = 8.923, p < .00001. All eight of the
artificial fish showed a statistically significant preference for
the in-group versus the out-group (all Ps < .00001). Five of
the artificial fish developed a strong preference for in-group
members, spending more than 90% of their time with the
familiar group. The other three fish developed less strong
social preferences, spending 55% to 63% of their time with
in-group members. Despite being trained in identical visual
environments, the artificial fish developed different social
behaviors as one another.

Experiment 2: Self-Segregation Task
A defining signature of social preferences in the real

world is that they drive animals to self-segregate into social
groups. To test whether our artificial fish developed this
signature of social grouping, we created a self-segregation
task that involved placing all of the artificial fish in the same
environment and measuring whether the fish spontaneously
self-segregate into groups based on their pigment type. To
be clear, Exp. 2 was not a digital twin experiment of a prior
animal study, but rather a validity check that the 2AFC task
used in Exp. 1 reliably captures the core construct under
investigation: social grouping. If so, then the artificial fish
from Exp. 1 should self-segregate into groups.
Rearing Conditions. The rearing conditions were

identical to those used in Experiment 1.
Testing Conditions. The self-segregation task (Figure

1B) involved placing all of the 8 trained artificial fish (4
orange fish and 4 blue fish) into a single environment. At
the start of each trial, the fish were centered in the
environment, oriented randomly, and then allowed to freely
move and interact with other fish. To measure whether the
fish self-segregated, we measured the Euclidean distance
between each fish and every other fish at each time step,
then computed the in-group distance (i.e., the average
distance to fish of the same color) and the out-group
distance (i.e., the average distance to fish of unfamiliar
color). We tested the fish across 1,000 trials. Each trial
lasted 3,000 time steps.

Results & Discussion
Group performance. Figure 2B shows the

self-segregation behavior of the artificial fish. On the group
level, the artificial fish spent significantly more time near
fish with familiar versus novel colors, t(7) = 15.5, p < .0001.
The distance to in-group members was significantly smaller
than the distance to out-group members, indicating that the
artificial fish spontaneously learned to self-segregate into
social groups.
Individual-subject performance. As illustrated in Figure

2B, all eight of the artificial fish showed a statistically
significant preference for in-group versus out-group
members (all Ps < .00001). To test for the presence of

individual differences, we examined whether the identity of
the subject was a predictor of self-segregation behavior. A
one-way ANOVA showed that the identity of the subject
was a strong predictor of performance: F(7, 999) = 720.5, p
< .00001. These results extend the results from Experiment
1, showing that artificial fish can spontaneously develop
self-segregation behavior, favoring “us” over “them.”

Discussion
We performed digital twin experiments, in which

newborn fish and artificial fish were raised and tested in the
same visual environments. This approach permits direct
comparison of whether animals and machines learn common
social preferences when exposed to the same experiences
(training data). In this paper, we explored whether artificial
fish can spontaneously learn fish-like social preferences,
leading to social grouping and a preference for “us” over
“them.” We found that fish-like social grouping
spontaneously develops in artificial fish who are equipped
with reinforcement learning and curiosity-driven learning.
These social preferences emerged when artificial fish were
reared in similar visual (and social) environments as real
fish (Engeszer et al., 2004).
Origins of social grouping. Biologists and psychologists

have proposed a range of theories about the origins and
computational foundations of social behavior (e.g., Pinker,
1994; Cosmides et al., 2003; Tinbergen, 1951). Some
theorists have argued that social behavior emerges from
innate, domain-specific learning mechanisms for
representing social partners and for categorizing the social
world into groups (e.g., Spelke & Kinzler, 2007), whereas
others have argued that social behavior emerges from
domain-general learning mechanisms that become
specialized for social cognition during development (e.g.,
Oudeyer & Smith, 2016). It has not been possible to
distinguish between these theories because researchers
could not test whether candidate learning mechanisms are
sufficient to produce animal-like social behavior. Do
embodied agents actually need innate, domain-specific
mechanisms to learn about the social world? Or can social
knowledge emerge from domain-general mechanisms
shaped by embodied social experiences?

Our experiments provide an existence proof that social
grouping can emerge from domain-general mechanisms.
Neither reinforcement learning nor curiosity-driven learning
were designed to produce social grouping in embodied
agents. Nevertheless, when these learning algorithms are
embodied and trained in realistic social environments,
animal-like social preferences spontaneously develop. Thus,
we hypothesize that social grouping is an emergent property
of three ingredients: reinforcement learning, intrinsic
motivation (e.g., curiosity-driven learning), and embodied
social experiences with in-group members.

Consequently, evolution would not have needed to
discover innate, domain-specific mechanisms to produce
social behavior. Rather, once evolution discovered
domain-general mechanisms, animals could have rapidly



learned social behavior during early development. Thus, we
speculate that the computational foundations of social
behavior are domain-general learning mechanisms (e.g.,
reinforcement learning and intrinsic motivation), which
allow animals to rapidly learn domain-specific social
knowledge through early social experiences.

Why do social preferences emerge from domain-general
learning mechanisms? Perhaps counterintuitively, we found
that curiosity (i.e., a preference for the unpredictable) during
early stages of life drove social grouping (i.e., a preference
for familiar groupmates). This preference for familiar
groupmates developed in the artificial fish because the other
fish were the most unpredictable things in the environment.
Accordingly, curiosity-driven learning motivates agents to
learn about groupmates, leading to the development of
collective behavior (Lee, Wood, & Wood, 2021) and social
grouping. We emphasize that curiosity-driven learning must
be subject to a learning window to produce social grouping;
if learning remains permanently “active,” then agents will
continue to seek unpredictable experiences and will likely
not develop a preference for in-group members. Critically,
there is ample evidence for learning windows in nature. For
example, filial imprinting occurs during a short sensitive
period immediately after birth, during which animals
develop a lasting attachment to groupmates seen early in life
(Horn, 2004; Patterson & Bigler, 2006; Tinbergen, 1951).
We speculate that reverse engineering animal behavior and
intelligence will require not only finding the right learning
mechanisms, but will also require raising animals and
machines in the same environments and constraining
machine learning to similar learning windows as real
animals.
Image computable models of social grouping. Lee et al.

(2021) introduced pixels-to-actions models of collective
behavior that spontaneously develop animal-like grouping
behavior. Our study extends this approach to the domain of
social preferences. Pixels-to-actions models are valuable
because they formalize the mechanisms underlying the
entire learning process, from sensory inputs to behavioral
outputs. As a result, these image computable models can be
directly compared against real animals, falsified, and
refined.

These results set the stage for many exciting future
directions. With the discovery of a model class that
spontaneously learns similar social preferences as real
animals, we can now search through the model class to find
particularly strong models, via a continuous cycle of model
creation, model prediction, and model testing against
experimental results. This approach can move the field
forward by encouraging the creation of neurally mechanistic
pixels-to-actions models that learn from the same embodied
data streams as newborn animals. Over time, we can cull
models that are less accurate and focus attention on
improving and extending the most accurate models.

The most promising models can then be investigated in
richer detail, leading to greater intuitive understanding of
the underlying mechanisms. Controlled comparisons with

different architectures, objective functions, and learning
rules could define the necessary and sufficient learning
algorithms for animal-like social behavior. Likewise,
controlled comparisons using the same learning algorithms,
but different training data (from different controlled-rearing
experiments), could reveal which experiences are necessary
and sufficient to develop animal-like social behavior.

Finally, pixels-to-actions models are valuable because
they allow integration of research findings across diverse
fields. For instance, while it was not our primary goal, we
observed robust evidence for ‘personality differences’ in the
artificial fish, with some fish strongly preferring to spend
most of their time with groupmates and other fish
developing less strong social preferences. We emphasize
that the artificial fish had identical learning algorithms and
were raised in the same environment. The only difference
between the fish was the initial random configuration of
their brain weights and the particular experiences that the
fish acquired during the training phase. Nevertheless, these
differences were sufficient to produce personality
differences in machines. We suspect that the complex group
dynamics that emerged during the training phase resulted in
different learning opportunities (training data) for each fish,
which led each fish to learn different policies (personalities)
from one another. Future research could explore this idea
directly by characterizing how the particular experiences
encountered by artificial fish lead to various personality
differences (e.g., sociality, boldness, novelty seeking).

Importantly, pixels-to-actions models allow researchers to
study different phenomena (i.e., social preferences and
personality differences) in parallel, using the same
integrative pixels-to-actions model. Future studies might
further expand the reach of these integrative models, by
extending this approach to other collective behavior topics,
including leadership, foraging, and navigation.

Conclusion
In sum, we present a pixels-to-actions model of social

preferences, which indicates that we have isolated a set of
learning mechanisms that are sufficient for learning social
preferences in embodied agents. When trained in naturalistic
environments, domain-general learning mechanisms are
sufficient to drive social grouping. We thus see these results
as a starting point for building an engineering-level
understanding of the mechanisms that underlie social
behavior. Our results complement a growing body of work
using deep neural networks to model the visual (Yamins et
al., 2014), auditory (Kell et al., 2018), and motor (Michaels
et al., 2020) systems, and extend this “reverse engineering”
approach to the study of social grouping: a behavior with
deep historical roots in psychology, neuroscience, and
biology.
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