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Controlled-rearing studies provide the unique opportunity to examine which psychological mechanisms
are present at birth and which mechanisms emerge from experience. Here we show that one core com-
ponent of visual perception—the ability to parse objects from backgrounds—is present when newborn
animals see their first object. We reared newborn chicks in strictly controlled environments containing a
single object on a single background, then tested the chicks’ object parsing and recognition abilities. We
found that chicks can parse objects from natural backgrounds at the onset of vision, allowing chicks to
recognize objects equally well across familiar and novel backgrounds. We also found that the develop-
ment of object parsing requires motion cues, akin to the development of object parsing in human infants
and newly sighted blind patients. These results demonstrate that newborn brains are capable of “one-
shot object parsing” and show that motion cues scaffold object perception from the earliest stages of
learning. We conclude that prenatal developmental programs build brain architectures with an object-
based inductive bias, allowing animals to solve object perception tasks immediately without extensive
experience with objects. We discuss the implications of this finding for developmental psychology,
computational neuroscience, and artificial intelligence.
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To perceive objects successfully, newborn brains must perform
a difficult task: They must parse objects from natural backgrounds
and build invariant object representations that generalize across
new viewing situations (e.g., changes in viewpoint, background,
and illumination conditions). This is a difficult computational task
because real-world images typically contain many regions with
different colors and luminances, so the visual system must decide
how to carve and combine these regions into meaningful object
percepts. While many studies have examined how mature subjects
parse objects, methodological barriers have prevented detailed ex-
amination of object parsing in newborn organisms. Thus, the ori-
gins of this ability remain unknown. How do newborn brains learn

to parse objects from backgrounds? What mechanisms underlie
this core visual ability?1

Statistical Learning

One candidate learning mechanism for visual parsing is statisti-
cal learning. The term “statistical learning” refers to processes that
enable detection of regularity in sensory inputs (e.g., co-occur-
rence frequencies, transitional probabilities, nonadjacent depend-
encies). Studies from developmental psychology (Krogh et al.,
2012; Saffran et al., 1996; Smith et al., 2014) and computational
neuroscience (DiCarlo et al., 2012; Wiskott & Sejnowski, 2002)
suggest that visual systems learn to interpret sensory input through
statistical learning, by associating features that co-occur in the
input stream. Infants and adults, for example, extract statistical
regularities from sensory input to construct higher-order object
concepts (Fiser et al., 2007; Kirkham et al., 2002; Saffran & Kirk-
ham, 2018; Turk-Browne et al., 2005).

Statistical learning also plays a central role in the development
of artificial visual systems. For example, deep artificial neural net-

Samantha M. W. Wood https://orcid.org/0000-0002-2219-0285
Justin N. Wood https://orcid.org/0000-0002-2219-0285
Samantha M. W. Wood and Justin N. Wood designed the research and

performed the experiments. Samantha M. W. Wood analyzed the data.
Samantha M. W. Wood and Justin N. Wood wrote the article.
Funded by NSF CAREER Grant BCS-1351892 and a James S.

McDonnell Foundation Understanding Human Cognition Scholar Award.
This research was conducted at the University of Southern California.
Correspondence concerning this article should be addressed to Samantha

M. W. Wood or Justin N. Wood, Department of Informatics, Indiana
University, Myles Brand Hall, 901 East 10th Street, Bloomington, IN 47408,
United States. Email: sw113@indiana.edu or woodjn@indiana.edu

1
“Object parsing” refers to the ability to segment objects from

backgrounds and bind object features into representations for recognition.
Object parsing is one of many abilities involved in object perception.
Object perception also involves object individuation (e.g., Xu & Carey,
1996), object permanence (e.g., Bremner et al., 2015), amodal completion
(e.g., Kellman & Spelke, 1983), the discovery of object affordances (e.g.,
Bushnell & Boudreau, 1993), and so forth.
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works (ANNs) trained to extract statistical regularities from mil-
lions of diverse training images can learn to recognize objects
across novel viewing situations—achieving human-level perform-
ance on challenging object recognition tasks (Krizhevsky et al.,
2012; Yamins & DiCarlo, 2016). Moreover, ANN models can
accurately predict neural responses to novel images and be used to
control the activity state of populations of neurons (e.g., Bashivan
et al., 2019). Thus, ANN models provide a mechanistic under-
standing of object recognition in mature visual systems.
While statistical learning of spatial features is a powerful frame-

work for understanding object recognition, this type of learning is
insufficient to support object recognition when a newborn has limited
experience with the world. For instance, if a newborn’s visual experi-
ence consists of a single object seen on a single background, then the
object and background will have a 100% concurrence rate in the
newborn’s visual input. Statistical learning mechanisms bind together
features with high concurrence rates, so a newborn that relies solely
on statistical learning of spatial features would build an 'incorrect'
object representation that includes features from the background.
Indeed, ANN models typically require thousands to millions of

diverse training images to successfully dissociate object and back-
ground features, and many still suffer from this “statistical concur-
rence problem” (Mordvintsev et al., 2015). For example, when
ANN models were trained to recognize objects (e.g., dumbbells),
but the objects were presented in similar scenes across the training
images (e.g., the dumbbells were always held by weightlifters),
then the resulting visual representations incorrectly linked object
and scene features (e.g., the dumbbell representation incorrectly
included hand and arm features; for details see Mordvintsev et al.,
2015). Thus, to overcome this statistical concurrence problem, bi-
ological visual systems might use additional mechanisms to parse
objects from backgrounds.

Motion-Based Visual Parsing

A second candidate learning mechanism for visual parsing is
motion-based parsing. Studies of infants suggest that motion-based
parsing plays an important role in the development of object percep-
tion. Young infants use motion cues to determine the three-dimen-
sional shape of objects (Arterberry & Yonas, 2000; Owsley, 1983)
and to integrate spatially separated parts into unified object concepts
(Johnson et al., 2002; Kellman & Spelke, 1983; Kellman et al.,
1986). Furthermore, the ability to parse objects using motion cues
tends to emerge before the ability to parse objects using static cues
(e.g., color, shape; Spelke, 1990). During early stages of visual learn-
ing, motion appears to be critical for both parsing objects and binding
their constituent features into representations for recognition.
Complementary evidence for motion-based parsing comes from

studies exploring visual learning after recovery from blindness.
Like young infants, newly sighted patients do not rely on promi-
nent figural cues of grouping (e.g., good continuation, junction
structure) to parse objects (Ostrovsky et al., 2009). Rather, they
use motion cues to parse objects and develop representations that
permit recognition in static images. For both infants and patients
recovering from blindness, dynamic information provides a key
organizing influence for early visual processing. Motion-based
parsing might therefore be a “primitive” of object perception—a
program of visual learning that enables the brain to assemble frag-
mented features into unified object representations.

One attractive feature of motion-based parsing is that it can over-
come the statistical concurrence problem described above. Motion
can act as a selective-gating mechanism, constraining learning to
moving features, rather than the whole visual field. Since objects
typically move separately from backgrounds, motion-based parsing
can segment objects from backgrounds without the need for diverse
visual experiences with objects.

While the studies cited above indicate that motion-based parsing
facilitates early visual learning, it is unclear what role experience
plays in the development of this ability. Both the infants and the
patients recovering from blindness had already acquired weeks to
months of uncontrolled visual experience before they were tested,
so in principle, motion-based parsing might be learned from early
visual experience. While a few studies have explored whether
newborn humans use motion cues to integrate spatially separated
parts into unified object representations, the results from these
studies have been mixed, with the majority of studies reporting no
evidence for this ability (Slater et al., 1990; Slater et al., 1996;
Valenza & Bulf, 2011; Valenza et al., 2005). Furthermore, to our
knowledge, no studies have tested whether newborn organisms
can parse objects from natural backgrounds—a critical skill for
object perception in the real world. Consequently, it is not clear
(a) whether motion-based parsing is a primitive of object percep-
tion (i.e., present and functional at the onset of vision); or (b) what
role experience plays in the development of object parsing. To
address these questions, we used a controlled-rearing approach.

Using Automated Controlled Rearing to Study the
Origins of Object Parsing

When animals are raised in uncontrolled environments, it is dif-
ficult (if not impossible) to characterize the precise role that expe-
rience plays in visual development. Conversely, with controlled-
rearing experiments, researchers can systematically manipulate the
visual experiences provided to newborn subjects and measure the
effects of those manipulations on perceptual and cognitive devel-
opment. This is important because visual experience can rapidly
shape biological neural networks (Arcaro et al., 2017; Li &
DiCarlo, 2008). Controlled-rearing experiments therefore provide
an experimental avenue for probing the core learning mechanisms
in newborn brains and for characterizing the role of experience in
visual development.

We used newborn chicks (Gallus gallus) as a model system
because they are uniquely suited for studying the earliest stages of
visual learning. Unlike commonly used animal models in psychol-
ogy (e.g., rats, pigeons, monkeys), chickens are a precocial species
(mobile in the first day of life) and can be raised in strictly con-
trolled environments immediately after hatching (Wood, 2013;
Wood & Wood, 2015). While previous studies have shown that
newborn chicks can perceive partly occluded objects (Lea et al.,
1996) and build invariant representations of objects seen on homo-
geneous white backgrounds (Wood, 2013, 2016; Wood & Wood,
2015, 2016, 2018, 2020), no studies have examined whether (and
how) newborn chicks learn to parse objects from natural back-
grounds. Controlled-rearing studies of chicks provide a valuable
opportunity to explore how newborn brains solve one of the cen-
tral challenges of object perception.

Recently, it has also become possible to fully automate con-
trolled-rearing studies of newborn chicks. Automation allows
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newborn chicks to be observed continuously (24/7), producing
large amounts of data per subject. For example, whereas nonauto-
mated methods typically produce a few minutes of test data per
chick (e.g., 6 minutes), we collected 10,080 minutes of test data
per chick, a 1,680-fold increase in data quantity. As a result, we
can perform statistical analyses of each chick’s performance to
assess whether each chick succeeded on the task. This is valuable
from a theoretical perspective. If motion-based object parsing is a
core learning mechanism in newborn brains, then it should be
present in most (if not all) newborn animals. By collecting enough
data to analyze each individual’s performance, our automated
approach provides a strong test of the hypothesis that motion-
based object parsing is a core learning mechanism in newborn
brains.
Automation also offers many additional benefits over nonauto-

mated methods (Wood & Wood, 2019). First, because computers
present the stimuli and code the behavior, automated methods are
free of experimenter bias. Second, because automation produces
large amounts of data per subject, we can substantially decrease
measurement error and substantially increase effect sizes, result-
ing in high-powered experiments. Third, by monitoring behavior
24/7, automation permits longitudinal analyses of how visual
learning changes over time. Taken together, automation can be
used to illuminate the core learning mechanisms in newborn brains
with an unprecedented level of precision.

The Present Study

To investigate the origins of visual parsing, we tested whether
newborn chicks are capable of “one-shot object parsing.” Specifi-
cally, we presented chicks with a challenging task, in which their
visual world contained a single object on a single background
(input phase, Figure 1A). As a result, the object and background
had a 100% concurrence rate. During the test phase (Figure 1B),
we then tested whether the chicks could recognize their imprinted
object when the object was presented on familiar and novel
backgrounds.
If newborn chicks depend solely on statistical learning to parse

and recognize objects, then they should bind the object and back-
ground features together during the input phase. Accordingly, the
chicks’ object recognition performance should be high when the
object is presented on the familiar background and low when
the object is presented on novel backgrounds. Conversely, if new-
born chicks are capable of one-shot object parsing (i.e., they have
mechanisms for segmenting objects from backgrounds at the onset
of vision), then their recognition performance should be high,
regardless of whether the object is presented on familiar or novel
backgrounds.

Experiment 1

Our controlled-rearing method was designed to mimic the ex-
perimental design from machine learning studies of ANN models.
During the training phase, ANN models are provided with a set of
training data for learning. During the test phase, learning is turned
off, and the ANN model is tested on a variety of familiar and novel
stimuli. With this approach, researchers can measure what an
ANN model has learned from a specific set of training data. Like-
wise, in our study, we presented chicks with a set of training data

during the input phase (a single object moving on a single back-
ground). Then, during the test phase, we measured what the chicks
had learned from the training data provided in the input phase. By
using the same experimental design as machine learning studies,
this approach allows researchers to make direct comparisons
between the learning abilities of newborn animals and ANN mod-
els: an essential step for building neural network models of visual
development.

Unlike traditional controlled-rearing studies of newborn chicks,
in which the chick typically receives a short input phase (e.g., 2
hr) and test phase (e.g., 6 min), our design included a long input
phase (5 days) and test phase (7 days). We used a long input phase
because imprinting in chicks typically ends �3 days after hatch-
ing. By exposing the chicks to the imprinting stimulus for 5 days,
we could ensure that the imprinting period had ended and that the
chicks would not imprint to the test stimuli (Wood & Wood,
2015). We used a long test phase because we wanted to collect
precise measurements of performance from each subject. In previ-
ous work, we found that increasing the amount of data collected
from each chick can increase the effect size by a factor of four and
reduce measurement error by a factor of three (Wood & Wood,
2019). Thus, collecting more data per chick significantly improves
the precision of the data, while also producing high-powered
experiments.

Using long input and test phases also improved the ecological
validity of our task. In the real world, chicks have multiple days to
imprint (i.e., chicks are not restricted to a short two-hour imprint-
ing window). Moreover, after chicks imprint, they spend several
weeks in proximity to their imprinted objects. During this time,
chicks repeatedly separate and reunite with their imprinted objects
(such as when foraging for food). Accordingly, our test phase was
more similar to the repeated-recognition task that chicks face in
nature.

Method

Subjects

Thirty-one Rhode Island Red chicks of unknown sex were
tested. The sample size was determined before the experiment was
conducted. The sample size was based on previous automated con-
trolled-rearing experiments with newborn chicks (Wood, 2013,
2015). Specifically, a minimum sample size for achieving 80%
power was determined based on prior studies (Wood, 2013); and
the final sample size was about three times larger than the mini-
mum sample size to accommodate counterbalancing of the stimuli.
Ultimately, this experiment was powered to over 99.9% for detect-
ing effect sizes (Cohen’s d) of d = 1.0 or above.2

No subjects were excluded from the analyses. The eggs were
obtained from a local distributer and incubated in darkness in an
OVA-Easy incubator (Brinsea Products Inc., Titusville, FL). To avoid

2While an effect size of d = 1.0 is considered a very large effect in the
psychology literature, this is a typical effect size estimate in automated
controlled-rearing studies with newborn chicks. For example, Wood (2013)
and Wood (2015) found effect sizes with an average of d = 1.4 for view-
invariant object recognition tasks. Automated methods allow large amounts
of data to be collected from each newborn chick, which reduces
measurement error and increases the effect size of experiments (Wood &
Wood, 2019).
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exposing the chicks to any extraneous visual input, we used night
vision goggles to move the chicks in darkness from the incubation
room to the controlled-rearing chambers. Each chick was raised within
its own chamber. This research was approved by The University of
Southern California Institutional Animal Care and Use Committee.

Procedure

The chicks were raised in automated controlled-rearing cham-
bers (66 cm length3 42 cm width3 69 cm height) that were con-
structed from white, high-density polyethylene. The chambers

Figure 1
The Experimental Design

Note. (A) During the input phase, the chicks were raised with a single virtual object moving on a single back-
ground. (B) During the test phase, the chicks were presented with test trials in which the imprinted object
appeared on one display wall and a novel object appeared on the opposite display wall. The timelines show
how the virtual objects were presented on the two display walls during sample 4-hr periods during the (C)
input phase and (D) test phase. Across the test trials, the imprinted object and novel object were presented on
the familiar background and on novel backgrounds, in a fully crossed design. The object was also presented
from familiar viewpoints (0° azimuth rotation) and novel viewpoints (30° and 60° azimuth rotations) on differ-
ent test trials. This schematic illustrates examples of each background test condition; the actual order of the
test trials was randomized across the experiments. See the online article for the color version of this figure.
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contained no real-world (solid, bounded) objects. To present
object stimuli to the chicks, virtual objects were projected on two
display walls situated on opposite sides of the chamber. The dis-
play walls were 19” liquid crystal display monitors (1,440 3 900
pixel resolution). Food and water were provided ad libidum in
transparent troughs in the ground. We used grain as food because
a heap of grain does not behave like an object (i.e., a heap of grain
does not maintain a rigid, bounded shape). The floors were con-
structed from black wire mesh supported by transparent beams.
Microcameras in the ceilings of the chambers recorded all of the
chicks’ behavior, and the video feed was analyzed with automated
image-based tracking software (EthoVision XT, Noldus Informa-
tion Technology, Leesburg, VA). This software calculated the
amount of time each chick spent within zones (22 cm 3 42 cm)
next to the left and right display walls. All of the chicks’ behavior
(9 samples/s, 24 hr/day, 7 days/week) was tracked and recorded
across the 12 days of the experiment. In total, we collected 8,928 hr
of video footage for this experiment (24 hr per day3 12 days 3 31
subjects).
During the input phase (Days 1–5), the chicks were raised in

controlled-rearing chambers that contained a single virtual object
rotating around a fronto-parallel horizontal axis (see Figure 1).
The object rotated continuously, completing a full rotation every
15 s. The object was presented on one of three background scenes.
Each chick only saw the imprinted object on a single background,
and the background scene was counterbalanced across chicks. The
object appeared on one display wall at a time and switched to the
opposite display wall every 2 hr (following a 1-min period of dark-
ness). The display wall that was not showing the imprinted object
was white. Figures 1A and 1C illustrate how the imprinting stimuli
were presented on the display walls during the input phase.
Supplementary Movie 1 shows a sample animation presented dur-
ing the input phase.
During the test phase (Days 6–12), we tested whether the chicks

could recognize their imprinted object when the object was pre-
sented on familiar and novel backgrounds. On each test trial, the
imprinted object appeared on one display wall, and a novel object
appeared on the opposite display wall (Figures 1B and 1D). The
novel object was the same color as the imprinted object and moved
at the same speed along the same motion trajectory. The two
objects were modeled after those used in previous studies that
tested for invariant object recognition in adult rats (Zoccolan et al.,
2009) and newborn chicks (Wood, 2013, 2015). Fifteen of the
chicks were imprinted to Object 1, with Object 2 serving as the
novel object, and 16 of the chicks were imprinted to Object 2,
with Object 1 serving as the novel object.
Across the test trials, the objects were presented on all possible

combinations of the three background scenes (Background 1 vs.
Background 1, Background 1 vs. Background 2, Background 1 vs.
Background 3, etc.). Accordingly, we grouped the test trials into
four background conditions. In the “imprinted object (imprinted
background) versus novel object (imprinted background)” condi-
tion, both the imprinted object and the novel object were shown
on the imprinted background from the input phase. In the
“imprinted object (novel background) versus novel object (novel
background)” condition, both the imprinted object and the novel
object were shown on a novel background. In the “imprinted
object (imprinted background) versus novel object (novel back-
ground)” condition, the imprinted object was shown on the

imprinted background, and the novel object was shown on a novel
background. Finally, in the “imprinted object (novel background)
versus novel object (imprinted background)” condition, the
imprinted object was shown on a novel background, and the novel
object was shown on the imprinted background.

In each of the background conditions, the objects were also
shown from three possible viewing angles: 0° change in azimuth
rotation, 30° change in azimuth rotation, and 60° change in azi-
muth rotation. We included these viewpoint changes to test
whether the chicks were simply encoding and recognizing familiar
features versus building high-level object representations that gen-
eralize across novel viewpoints. If chicks simply encode familiar
features, then their recognition performance should be higher
when the object is shown from the familiar viewpoint (when fa-
miliar features are present) and lower when the object is shown
from novel viewpoints (when novel features are present). Con-
versely, if chicks build high-level (view-invariant) object represen-
tations, then their recognition performance should be high
regardless of whether the object is shown from familiar or novel
viewpoints.

The order of the test trials was randomized across the test phase.
The imprinted object and novel object were shown from the same
viewing angle within a test trial. During the trials, the objects
rotated 360° around a fronto-parallel horizontal axis (as in the
input phase). Supplementary Movie 2 shows sample animations
presented during the test phase.

The chicks received 24 test trials per day at the rate of one trial
per hour. Each test trial lasted 40 min and was followed by a 20-
min rest period. During the rest periods, the animation from the
input phase appeared on one display wall, and a white screen
appeared on the other display wall. We included rest periods in the
design for two reasons. First, the rest periods allowed the chicks to
reunite with their imprinted object without needing to make a
choice between two objects. Second, the rest periods provided a
baseline measure of the amount of time the chicks generally pre-
ferred to spend in proximity to their imprinted stimuli.

Results

Overall Recognition Performance

The results are shown in Figure 2. Our dependent variable was
the proportion of time the chick spent by their imprinted object
versus the novel object. To compute performance, we used the fol-
lowing formula: time by imprinted object/[time by imprinted
object þ time by novel object]. Performance was well above
chance level (50%) in all four background conditions (one sample
t-tests, all ps , 10�7, all Cohen’s ds . 1.2). Performance was also
well above chance level in all three viewpoint conditions (one
sample t-tests, all ps , 10�10, all Cohen’s ds . 1.7). The chicks
successfully recognized their imprinted object, regardless of
whether the object was presented on familiar or novel backgrounds
or whether the object was presented from familiar or novel view-
points. In all background and viewpoint conditions, the analyses
exceeded five sigma levels of statistical significance (the threshold
for new discoveries in theoretical physics).

To examine whether performance differed across the back-
ground and viewpoint conditions, we performed a repeated-meas-
ures ANOVA with the within-subjects factors of background
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condition and viewpoint angle. The ANOVA revealed a significant
main effect of background condition, F(3, 90) = 9.455, p = .00002,
h2 = .240, and a significant interaction between background condi-
tion and viewpoint angle, F(6, 180) = 2.509, p = .023, h2 = .077.
The main effect of viewpoint angle was not significant, F(2, 60) =
.032, p = .969, h2 = .001. The significant interaction between
background condition and viewpoint angle was driven by slightly

lower performance when the imprinted object was presented on
the familiar background from 0° (with the novel object presented
on the novel background). Importantly, this should have been the
condition with the highest performance if the chicks suffered from
the statistical concurrence problem and failed to segment object
and background features. We suspect that the slightly lower per-
formance in this condition may reflect newborn chicks’ competing

Figure 2
Experiment 1 Results

Note. (A) Recognition performance in the four background conditions. (B) Recognition performance in the
three viewpoint conditions. The chicks’ performance (percent time spent with the imprinted object versus novel
object) was well above chance level in all test conditions. *** denotes p ,.001 (C) Recognition performance
in each background condition on each test day. While performance improved across the test phase, the chicks
successfully recognized their imprinted object on all test days, including Day 1 of testing. (D) Individual sub-
ject performance. The graphs show the percent of time each chick spent with the imprinted object versus the
novel object. Each chick is represented by a gray marker. The blue boxes indicate the 25th to 50th percentile
and the 50th to 75th percentile of performance. Dashed lines indicate chance performance. Error bars show 61
standard error (SEM). See the online article for the color version of this figure.
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motivations to spend time with the imprinted object and to explore
novel information (i.e., the novel background), although additional
research is needed to confirm this hypothesis.

Analysis of Change in Performance Over Time

Overall recognition performance by test day is shown in Figure
2C. To determine whether performance changed across the test
phase, we performed a repeated-measures ANOVA with the
within-subjects factor of test day. The ANOVA revealed a signifi-
cant main effect of test day, F(6, 180) = 8.585, p , 10�7, h2 =
.223. A posthoc correlation between test day and the average per-
formance for that day revealed a significant positive relationship
between test day and performance (r = .888, p = .008). Thus, the
chicks’ performance improved across the test phase. Critically,
however, performance was significantly above chance level even
on Day 1 (one-sample t-test, t(30) = 6.987, p , 10�7, Cohen’s
d = 1.255). In fact, when the analysis only included the test trials
in which the imprinted object was shown on novel backgrounds,
performance was still significantly above chance level on Day 1
(one-sample t-test, t(30) = 6.736, p , 10�6, Cohen’s d = 1.210).
Therefore, the chicks’ ability to segment object features from
background features cannot be explained solely in terms of learn-
ing across the test phase.
There are three potential reasons why performance increased

across the test phase. First, in addition to an imprinting response, the
chicks might have been motivated by a novelty response. A novelty
response would have reduced performance early in the test phase
(when the novel object was less familiar) and improved performance
as the novel object became more familiar. If this were the case, then
we would expect to find an increase in performance across the test
phase in our prior studies of object recognition in newborn chicks
(e.g., Wood, 2013, 2015; Wood & Wood, 2016, 2018). However, in
our prior studies, performance generally did not increase across the
test phase, which provides evidence against this account.
Second, the chicks might have continued to develop a stronger

imprinting response across the test phase. If the imprinting response
did become stronger across the test phase, then performance during
the rest periods of the test phase should have increased as well. To
test this hypothesis, we examined the proportion of time the chicks
spent by the imprinted object during the rest periods. We found that
rest period performance significantly decreased across the test phase
(one-way ANOVA: F(6, 180) = 6.070, p = .0002; h2 = .168; correla-
tion: r = �.794, p = .033). Thus, the chicks’ improvement in per-
formance does not appear to be caused by an increase in imprinting
strength across the test phase.
Third, the chicks might have developed stronger object parsing

abilities across the test phase. When objects are seen on natural
backgrounds, object parsing might continue to develop over time,
even after the imprinting period has ended. While prenatal devel-
opmental programs might lay the foundations for object parsing,
experience seeing objects on different backgrounds might provide
additional training data for optimizing the visual system. This is
our working hypothesis, but future research is needed to test this
possibility directly.

Analysis of Individual Subject Performance

Because we collected a large number of test trials from each
subject, we were able to analyze each chick’s object recognition

performance with high precision (Figure 2D). Collapsing across
the test trials, all of the chicks spent more time with the imprinted
object than the novel object (one-sample t-tests, 27 subjects, ps ,
.001; two subjects, ps , .01; two subjects, ps , .05; all p values
survived Holm-Bonferroni correction for multiple comparisons).
After limiting the analysis to the test trials in which the imprinted
object was shown on a novel background, 28 of the 31 chicks
spent more time with the imprinted object than the novel object
(one-sample t-tests, 28 subjects, ps , .001; all 28 significant p val-
ues survived Holm-Bonferroni correction for multiple compari-
sons). Thus, the majority of the chicks successfully segmented the
object and background features.

Discussion

Experiment 1 demonstrates that newborn chicks can success-
fully parse objects from natural backgrounds, even after acquiring
visual experience with just a single object on a single background.
The chicks also successfully recognized their imprinted object
across novel viewpoints. Thus, newborn chicks are capable of
one-shot learning of both background-invariant and view-invariant
object representations.

These results rule out the alternative account that the chicks
simply encoded and recognized clusters of features, without
actually having built object representations per se. If the chicks
had simply encoded familiar features, then their recognition per-
formance should have been higher when the object was shown
from familiar viewpoints (when familiar features were present)
and lower when the object was shown from novel viewpoints
(when novel features were present). In contrast, recognition per-
formance was high across both the familiar and novel viewpoints,
indicating that the chicks successfully built high-level (view-invar-
iant) object representations. A growing body of work in the neuro-
sciences has demonstrated that complex computational systems
are needed to solve view-invariant and background-invariant rec-
ognition tasks (e.g., DiCarlo & Cox, 2007; Yamins & DiCarlo,
2016). Because our chicks succeeded on both view-invariant and
background-invariant recognition tasks, these results indicate that
newborn brains can be equipped with powerful visual processing
machinery at the onset of vision.

These results raise the question of how newborn chicks parse
objects from backgrounds. One possibility is that chicks selec-
tively encode moving objects. As discussed above, prior studies
have shown that motion cues are critical for object parsing and
recognition in human infants (Spelke, 1990) and patients recover-
ing from blindness (Ostrovsky et al., 2009). Similarly, in Experi-
ment 1, the object moved while the background was stationary.
Thus, the chicks could have selectively encoded moving objects to
parse the object from the background.

A second possibility is that the 360° rotation of the object pro-
vided sufficient image variation for a statistical learning mecha-
nism to segment objects from backgrounds using spatial cues. As
the object rotated, parts of the object moved across different fea-
tures of the background, creating many object-background feature
changes at the boundaries of the object. In principle, this image
variation might be sufficient for object parsing through statistical
learning.

A third possibility is that the object features provided sufficient
cues to parse the object from the background. The objects were
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salient due to their homogeneous color, relatively large size, and
placement (superimposed on the middle of the background). Thus,
these object features may have allowed the chicks to select the
object through feature-based attention and parse the object from
the background.
To distinguish between these possibilities, we repeated Experi-

ment 1 with one crucial change: Rather than presenting a moving
object, we reduced the motion speed of the object so that, from an
observer’s perspective, the object appeared to be stationary (i.e.,
the object rotated extremely slowly, at the rate of 1° per min).
Over time, however, the object rotated 360° (as in Experiment 1),
so the chicks were presented with all of the individual images
shown in Experiment 1. Thus, the chicks received the same statis-
tical and object feature information in Experiments 1 and 2, but
the object moved in Experiment 1 and appeared stationary in
Experiment 2.
If newborn chicks parse objects by selectively encoding mov-

ing objects, then the chicks should fail to recognize their
imprinted object in Experiment 2 (because the motion cues were
removed). Conversely, if the displays used in Experiment 1 pro-
vided sufficient image variation for object parsing through statis-
tical learning and/or the object features were sufficiently salient
for object parsing, then the chicks should successfully recognize
their imprinted object in Experiment 2 (because the chicks in
Experiments 1 and 2 were presented with the same image varia-
tion and object features).

Experiment 2

Method

The methods in Experiment 2 were identical to those used in
Experiment 1, with two key changes. First, we tested a new group
of 36 chicks. Second, we used the same individual images as in
Experiment 1, but the images changed at a rate of 1 frame/min (as
opposed to 24 frames/s). Thus, while the object completed a full
rotation every 15 s in Experiment 1, the object completed a full
rotation every 360 min in Experiment 2 (Figure 3A). The objects
rotated at the same rate during the input phase and test phase.

Results

Overall Recognition Performance

The results are shown in Figures 3B and 3C. Overall recogni-
tion performance barely exceeded chance level (50%) in Experi-
ment 2 (one-sample t-test, M = 53%, t(35) = 2.152, p = .038,
Cohen’s d = .359). Comparing across the experiments, overall rec-
ognition performance was significantly lower in Experiment 2
compared with Experiment 1, t(56.7) = 8.662, p , 10�11. When
motion cues were removed from the displays, newborn chicks
were severely impaired at recognizing their imprinted object.
In Experiment 2, performance exceeded chance level in the

imprinted object (novel background) versus novel object (novel
background) condition (M = 53%, t(35) = 2.365, p = .024, Cohen’s
d = .394) and the imprinted object (imprinted background) versus
novel object (imprinted background) condition (M = 54%, t(35) =
2.247, p = .031, Cohen’s d = .374). However, neither survived
Holm-Bonferroni correction for multiple comparisons. For each

background condition, recognition performance was significantly
lower in Experiment 2 compared with Experiment 1 (all ps , .02;
all ps survive Holm-Bonferroni correction for multiple compari-
sons). In sum, in each background condition, the chicks were sig-
nificantly impaired at recognizing objects when motion cues were
removed.

Similarly, the chicks’ performance in Experiment 2 marginally
exceeded chance level in two of the viewpoint conditions (one-
sample t-tests, 0°: M = 53%, t(35) = 2.163, p = .037, Cohen’s d =
.360; 30°: M = 53%, t(35) = 2.152, p = .038, Cohen’s d = .359).
However, neither survived Holm-Bonferroni correction for multi-
ple comparisons. For each viewpoint condition, recognition per-
formance was significantly lower in Experiment 2 compared with
Experiment 1 (all ps , 10�8; all ps survive Holm-Bonferroni cor-
rection for multiple comparisons). Together, these results support
the hypothesis that newborn chicks selectively encode moving fea-
tures. When an object lacks motion cues, newborn chicks develop
impaired object recognition, regardless of whether the object is
presented in a familiar context (imprinted background and view-
point) or a novel context (new background and viewpoint).

Analysis of Rest Period Performance

The results from Experiments 1 and 2 indicate that motion cues
drive the development of object parsing and recognition in new-
born chicks. Accordingly, motion cues might drive the imprinting
response in chicks, such that chicks imprint more strongly to mov-
ing objects than to stationary objects. While some prior studies
indicate that newborn chicks will imprint to stationary stimuli
(e.g., Regolin & Vallortigara, 1995; Rosa-Salva et al., 2010), other
studies have emphasized the importance of motion cues for
imprinting (Horn, 2004; Wood, 2017). To examine whether
motion cues influenced the strength of the imprinting response in
our study, we measured the proportion of time the chicks spent by
the imprinted object during the rest periods.

Overall, the chicks in Experiment 2 spent the majority of their
time with the imprinted object during the rest periods (M = 75%,
t(35) = 13.182, p , 10�14). However, when we compared rest pe-
riod performance across Experiments 1 and 2, we found that per-
formance differed significantly across experiments (t(50.02) =
3.914, p = .0003; Cohen’s d = .915), with the chicks spending
more time with their imprinted object in Experiment 1. This find-
ing raises the possibility that the chicks’ impaired recognition per-
formance in Experiment 2 occurred simply because they were less
interested in the imprinting stimulus.

To test this hypothesis, we reanalyzed the results from Experi-
ment 2, controlling for differences in rest period performance
across experiments. Specifically, we removed the chicks in Experi-
ment 2 with the lowest rest period performance until the average
rest period performance matched across experiments (84% rest pe-
riod performance; 19 chicks removed). Then, we repeated our
Experiment 2 analyses with this subset of high-rest-period-per-
formance chicks.

The overall pattern of results was the same after controlling for
rest period performance. Performance exceeded chance level on
one background condition, imprinted object (novel background)
versus novel object (novel background) condition (M = 55%,
t(16) = 2.154, p = .047, Cohen’s d = .522), but this did not survive
Holm-Bonferroni correction for multiple comparisons. For all but
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Figure 3
Experiment 2 Results

Note. (A) Sample frames from the object displays in Experiment 2. The object rotated 360° at a rate of 1°/min.
The chicks in Experiment 2 saw all of the same images as the chicks in Experiment 1, but without clear motion
cues. (B) Recognition performance in the four background conditions. (C) Recognition performance in the
three viewpoint conditions. * denotes p ,.05 (D) Recognition performance in each background condition on
each test day. Performance remained low and stable across the test days. (E) Individual subject performance.
The graphs show the percent of time each chick spent with the imprinted object versus the novel object. Each
chick is represented by a gray marker. The blue boxes indicate the 25th to 50th percentile and the 50th to 75th
percentile of performance. Dashed lines indicate chance performance. Error bars show 61 standard error
(SEM). See the online article for the color version of this figure.
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one background condition, recognition performance was signifi-
cantly lower in Experiment 2 compared with Experiment 1 (ps ,
.001; all significant ps survive Holm-Bonferroni correction for
multiple comparisons).
Similarly, the chicks’ performance exceeded chance level in two

viewpoint conditions (one-sample t-tests, 0°: M = 55%, t(16) =
2.265, p = .038, Cohen’s d = .549; 30°: M = 55%, t(16) = 2.301,
p = .035, Cohen’s d = .558), but neither survived Holm-Bonferroni
correction for multiple comparisons. For each viewpoint condition,
recognition performance was significantly lower in Experiment 2
compared with Experiment 1 (all ps , 10�4; all ps survive Holm-
Bonferroni correction for multiple comparisons). Thus, chicks’ rec-
ognition impairment in Experiment 2 cannot be explained solely in
terms of a reduced imprinting response or a lack of interest in the
imprinting displays.

Discussion

Experiment 2 indicates that motion cues facilitate the develop-
ment of object parsing and recognition in newborn chicks. When
motion cues were removed from the displays, the chicks were
highly impaired at recognizing their imprinted object across famil-
iar and novel backgrounds and across familiar and novel view-
points. These results rule out the second and third possibilities
mentioned above. If the object displays used in Experiment 1 pro-
vided sufficient image variation for object parsing through statisti-
cal learning, then the chicks should have succeeded in Experiment
2 (because the chicks in Experiments 1 and 2 saw the same set of
images). Similarly, if the object features themselves were suffi-
ciently salient to drive object parsing and recognition, then the
chicks should have successfully recognized their imprinted object
in Experiment 2 (because the chicks in Experiments 1 and 2 saw
the same object features). We conclude that motion cues play a
critical role in the development of object parsing and recognition
in complex real-world scenes.

General Discussion

Controlled-rearing studies provide a unique opportunity to
examine which psychological mechanisms are present at birth and
which mechanisms emerge from experience. Here we show that
one core mechanism of visual perception—the ability to parse
objects from backgrounds—is present when newborn animals see
their first object. Despite acquiring experience with just one object
on one background (100% object-background concurrence rate),
newborn chicks built accurate object representations that general-
ized across novel backgrounds and novel viewpoints. Thus, new-
born brains can perform “one-shot object parsing.” These results
provide two important contributions to the literature.
First, these results demonstrate that motion-based object parsing

can be present and functional at the onset of vision. For decades,
researchers have speculated that motion-based parsing is founda-
tional to early visual learning, based on studies of human infants
(Kellman & Spelke, 1983) and newly sighted blind patients
(Ostrovsky et al., 2009). However, because the infants and patients
had already acquired weeks to months of natural visual experience
before they were tested, it was not possible to determine whether
motion-based parsing is a primitive of object perception or
whether this capacity is learned from early visual experience. Our

results provide clear evidence—both on the group level and on the
individual level—that motion-based parsing scaffolds object per-
ception from the earliest stages of visual learning. From a compu-
tational perspective, this is a valuable strategy. Restricting learning
to moving objects (rather than the whole visual field) reduces the
computational complexity of object perception, while also allow-
ing objects to be segmented from backgrounds.

Second, these results provide a unique comparison with ANN
models in artificial intelligence. With controlled rearing (as with
ANN models) we have a record of the full set of training data
available for learning, so we can directly compare the learning
abilities of ANN models and biological systems. ANN models are
“data hungry” (Marcus, 2018), typically requiring thousands to
millions of labeled training images to build invariant object repre-
sentations. Conversely, newborn chicks can build invariant object
representations from visual input of a single object on a single
background. Thus, newborn brains appear to be far more efficient
at building object representations than ANN models. This effi-
ciency may be due, in part, to a motion-based parsing mechanism
that restricts learning to moving objects, rather than the whole vis-
ual field. Consistent with this hypothesis, researchers have shown
that modifying ANN models to operate over motion cues substan-
tially improves the networks’ performance, especially when train-
ing data are limited (Goel et al., 2018; Pathak et al., 2017). For
ANN models to be biologically plausible (from a developmental
perspective), they will need to learn from motion cues during the
earliest stages of object perception.

More generally, we theorize that newborn visual systems have
an object-based inductive bias at the onset of vision. Inductive
biases permit rapid learning by constraining the space of input-out-
put functions that can be learned. We speculate that an object-
based inductive bias predisposes newborn visual systems to pro-
cess visual input in terms of bounded objects that persist over
space and time. Accordingly, an object-based inductive bias would
allow animals to solve challenging object perception tasks without
extensive object experience.

If newborn animals have an object-based inductive bias, then
we should observe two patterns. First, newborn animals should
succeed in object perception tasks early in development, without
extensive experience with objects. Second, an object-based induc-
tive bias should constrain the input-output functions that newborn
animals can learn. Specifically, newborn animals should learn best
from objects that have the same spatiotemporal properties as
objects in the real world.

Evidence for these two patterns comes from automated con-
trolled-rearing experiments with newborn chicks. First, these
studies show that newborn chicks are rapid learners: chicks are
capable of one-shot object parsing (as shown here), one-shot vis-
ual binding (Wood, 2014), one-shot view-invariant object recogni-
tion (Wood, 2013, 2015; Wood & Wood, 2020), and one-shot
object permanence (Prasad et al., 2019). Second, these studies
show that the development of object perception requires experi-
ence with natural object motion. As we show here, the develop-
ment of object parsing requires experience with moving objects,
and in prior work, we discovered that the development of visual
binding (Wood, 2016), view-invariant object recognition (Wood
& Wood, 2016, 2018), and object permanence (Prasad et al.,
2019) require experience with objects moving slowly and
smoothly over time, akin to natural objects. Thus, automated
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controlled-rearing studies provide strong evidence for an object-
based inductive bias in newborn brains. Prenatal developmental
programs build an object-based inductive bias that allows animals
to learn rapidly about objects and generalize far beyond the visual
experiences that they acquire during postnatal development.

Limitations of Our Findings and Directions for Future
Research

Our results raise additional questions for future research. First,
how do newborn brains build an object-based inductive bias during
prenatal development? One possibility is that developing brains gen-
erate their own “visual” experiences for learning. For instance, waves
of spontaneous activity in the retina are present long before eye open-
ing (Katz & Shatz, 1996) and are necessary for the normal develop-
ment of the visual cortex (Chou et al., 2013). These waves allow the
visual cortex of newborn animals to develop properties similar to
those found in the adult cortex (Cang et al., 2005), potentially
because retinal waves share many characteristics with real-world
objects. Both are bounded, cohesive units that move on continuous
spatiotemporal paths (Albert et al., 2008). These prenatal “object-
like” experiences provide early training data for building an object-
based inductive bias in developing brains. Since these retinal waves
have been discovered in both birds and mammals (Wong, 1999), we
suspect that this prenatal developmental program endows most new-
born animals with an object-based inductive bias.
Second, what role does attention play in motion-based object

parsing? The core problem of object parsing is determining which
features are part of objects versus backgrounds. We suspect that
attention will be heavily involved in this process, with motion
cues driving attention toward object features over background fea-
tures. We also suspect that other temporal cues that drive attention
toward object features (such as blinking or color changes) could
be used to parse objects from backgrounds. Of course, in the real
world, motion is typically the most reliable cue for determining
object boundaries (Spelke, 1990), so we focused on motion as a
starting point in our investigation of object parsing.
It would be interesting for future studies to explore whether

motion holds a privileged status in visual development compared
with other attention-grabbing cues. From an optics perspective,
motion provides valuable information. For instance, reverse pro-
jections from static visual inputs typically produce inaccurate rep-
resentations of three-dimensional (3D) space, whereas optic flow
resulting from object (or observer) motion provides a successive
combination of inputs for building accurate 3D models of the
world (Gibson, 1966; Johansson, 1970). Accordingly, newborn
brains might be predisposed to orient toward motion cues to drive
rapid visual development.
Third, what specific mechanisms underlie motion-based object

parsing? Our results are consistent with two (nonmutually exclu-
sive) possibilities. First, newborn brains might selectively encode
moving objects by filtering information through a motion-detec-
tion bottleneck during early visual processing. Evidence for this
possibility comes from studies showing that motion detection cir-
cuits can be hardwired into the retina (Kim et al., 2015; Zhang et
al., 2012), suggesting that newborn brains could selectively
encode moving objects during the earliest stages of visual learn-
ing. Second, newborn brains might use unsupervised temporal
learning (UTL) mechanisms to parse and recognize objects. When

an object moves, object features transition rapidly across back-
ground features, providing a useful set of training data for UTL
mechanisms (e.g., predictive coding). By encoding which features
move together versus separately, UTL mechanisms could (in prin-
ciple) learn to detect object boundaries, even after experience with
just a single object. Notably, both of these accounts depend heav-
ily on motion cues to drive the rapid emergence of object parsing
and recognition.

Ultimately, a deep understanding of the origins and computa-
tional foundations of object perception will require building task-
performing models of visual development. Task-performing mod-
els can simulate the complex interaction between newborn brains
and visual experience. Researchers across computational neuro-
science (Kriegeskorte & Douglas, 2018), cognitive science (New-
ell, 1973), and developmental psychology (Dupoux, 2018) have
long argued that task-performing models are essential for gaining
a mechanistic understanding of how brains process information.
Unlike verbal models, task-performing models can serve as formal
hypotheses that operate over raw sensory inputs and make behav-
ioral decisions; as such, these models make unequivocal predic-
tions that can be falsified by empirical data (Hasson et al., 2020;
Richards et al., 2019; Schrimpf et al., 2020).

Automated controlled-rearing studies will be essential for build-
ing accurate task-performing models of visual development
because these studies produce precise measurements of behavior
while simultaneously providing strict control over all of the ani-
mal’s experiences. Both biological and artificial neural networks
are heavily shaped by their experiences (training data). Accord-
ingly, by providing the same training data to newborn animals and
task-performing models, we can directly compare their learning
abilities. For instance, to account for the development of object
parsing, a task-performing model must learn to parse and recog-
nize objects from sparse training data (e.g., input of a single object
on a single background). By collecting precise benchmarks of vis-
ual learning in controlled environments, our study takes an impor-
tant step toward building task-performing models of the origins
and development of object perception.

Conclusion

Our study demonstrates that newborn animals are capable of
one-shot object parsing. By leveraging motion cues, newborn
chicks can parse objects from natural backgrounds and build invar-
iant representations that generalize across novel backgrounds and
novel viewpoints. As such, we argue that prenatal developmental
programs equip newborn brains with an object-based inductive
bias that allows animals to generalize far beyond the visual experi-
ences acquired during postnatal development. These findings illu-
minate the origins of a foundational visual ability and provide
benchmarks for building task-performing models of visual
development.

These results also compliment a growing body of work showing
that humans and other animals are capable of one-shot learning
(e.g., Lake et al., 2015; Landau et al., 1988; Xu & Tenenbaum,
2007). Our study indicates that some forms of one-shot learning
do not require extensive postnatal experience to develop. One-shot
object parsing scaffolds object perception during the earliest stages
of visual learning.
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