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Keywords: The accuracy of science depends on the precision of its methods. When fields produce precise
Replication crisis measurements, the scientific method can generate remarkable gains in knowledge. When fields
Automation produce noisy measurements, however, the scientific method is not guaranteed to work — in fact,
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Measurement error
Chick

noisy measurements are now regarded as a leading cause of the replication crisis in psychology.
Scientists should therefore strive to improve the precision of their methods, especially in fields
with noisy measurements. Here, we show that automation can reduce measurement error by
~60% in one domain of developmental psychology: controlled-rearing studies of newborn
chicks. Automated studies produce measurements that are 3-4 times more precise than non-
automated studies and produce effect sizes that are 3—4 times larger than non-automated studies.
Automation also eliminates experimenter bias and allows replications to be performed quickly
and easily. We suggest that automation can be a powerful tool for improving measurement
precision, producing high powered experiments, and combating the replication crisis.

1. Introduction

The scientific method has produced astonishing gains in human knowledge. In the past decade, however, it has become clear that
the scientific method does not always work, producing large bodies of unreproducible findings (loannidis, 2005). In social psy-
chology, for example, rigorous replication studies have failed to replicate many published findings, including textbook phenomena
such as ego depletion (Hagger et al., 2016) and social priming (Klein et al., 2014). Likewise, in a large-scale replication study of 100
experiments from three high-ranking psychology journals, only one-third to one-half of the original findings were observed in the
replication studies (Open Science Collaboration, 2015). Thus, some findings in psychology are reproducible, whereas others are not.
What distinguishes reproducible from non-reproducible findings, and how can we improve our methods to produce more re-
producible results?

The field of metascience - the scientific study of science itself — has identified a number of factors contributing to the replication
crisis. The most prominent factors are underpowered studies (low sample size relative to effect size), high measurement error (noisy
measurements), small effect sizes, experimenter bias, analytic flexibility (also known “P-hacking” and “the garden of forking paths”),
and conflicts of interest (Ioannidis, 2005; Loken & Gelman, 2017; Munafo et al., 2017; Simmons, Nelson, & Simonsohn, 2011).
Producing accurate and reproducible research therefore requires combating these factors.

Here, we present a case study of how automation can be used to address many of these factors contributing to the replication
crisis. Specifically, we focus on controlled-rearing studies of newborn chicks — an area with deep historical roots in developmental
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psychology. Our paper is organized as follows. First, we briefly describe controlled-rearing studies and their importance for devel-
opmental psychology. Second, we sample a range of non-automated controlled-rearing studies with newborn chicks and find that
these studies tended to produce noisy measurements and small effect sizes — two leading factors in the replication crisis. Third, we
show how automation can solve this problem, by allowing newborn chicks to be observed and tested for long periods of time. We
found that increasing the amount of data collected from each chick (via automated tracking software) reduced measurement error by
60% and increased the effect size of experiments by about 300%. Automation also eliminates experimenter bias and allows re-
plications to be performed quickly and easily. We conclude that automation can significantly improve the power and accuracy of
controlled-rearing studies with newborn animals.

2. Using controlled rearing to explore the origins of intelligence

Controlled-rearing studies are designed to explore the role of experience in shaping perception, cognition, and behavior. Despite
widespread interest in this topic, there is little agreement on fundamental issues, including which mechanisms exist in newborn
brains and how those mechanisms transform sensory input into knowledge. On one view, newborn animals are equipped with a
collection of domain-specific mechanisms, each shaped by evolution to perform a particular function. Some researchers argue that
newborns have numerous domain-specific systems (e.g., Cosmides & Tooby, 1994Steven, 2003), while others argue that newborns
have a smaller number of specialized core knowledge systems (i.e., systems for representing objects, actions, number, and space;
Carey, 2009; Spelke & Kinzler, 2007). According to this class of “nativist” theories, newborns have domain-specific learning me-
chanisms at the onset of post-natal experience.

On the second view, newborn brains contain flexible and adaptive domain-general learning mechanisms for building domain-
specific knowledge through experience (Karmiloff-Smith, 1995; Quartz & Sejnowski, 1997; Thelen and Smith, 1994). This view
originally traces back to Enlightenment thinkers such as Locke (Locke, 1689) and Hume (Hume, 1748). More recent accounts from
computational neuroscience (e.g., Hassabis & Kumaran, 2017; Hinton, 1992; McClelland & Rumelhart, 1985) argue that the re-
presentational abilities of the brain are built from the dynamic interaction between neural growth mechanisms and environmentally
produced neural activity. This class of “empiricist” theories predict that domain-specific systems emerge from domain-general
learning mechanisms as newborns acquire experience with the world.

Modern psychologists generally accept that newborn brains are equipped with both domain-specific and domain-general learning
mechanisms. Nonetheless, there is still little consensus on fundamental issues: researchers disagree about what these mechanisms are,
what they consist of, what causes them to emerge, and how they change with experience. How can we advance this debate and
characterize the learning mechanisms in newborn brains? As scientists have long noted, human infants are not an optimal population
for addressing these questions. When infants participate in experiments, they have already been shaped by days, weeks, or months of
experience with the natural visual world. Consequently, for almost any ability found in young human infants, it is not possible to
determine whether that ability is hardwired by natural selection or learned from experience. Indeed, there is growing evidence from
neuroscience that natural sensory experience plays an important role in building domain-specific knowledge (e.g., for faces and
symbols: Arcaro, Schade, Vincent, Ponce, & Livingstone, 2017; Srihasam, Vincent, & Livingstone, 2014). Studies of monkeys also
show that brains change rapidly in response to statistical redundancies in the environment, with significant neuronal rewiring
occurring in as little as 1 h (Li & DiCarlo, 2008, 2010). These findings allow for the possibility that even early emerging domain-
specific abilities are learned from post-natal experience.

In contrast to studies of human infants, controlled-rearing studies of nonhuman animals can reveal the precise role of post-natal
experience on development (Held & Hein, 1963; Hubel & Wiesel, 1962; Walk, Gibson, & Tighe, 1957). By systematically manip-
ulating the experiences provided to newborn subjects and observing the effects of those manipulations on behavior, we can dis-
tinguish the experiences that are causally related to developmental change from those that are not. Controlled-rearing experiments
therefore provide an experimental avenue for probing the role of experience in the development of mental abilities.

For example, recent automated controlled-rearing studies have started to reveal the role of visual experience in building object
concepts. These studies indicate that newborn animals (domestic chicks) can begin building abstract (view-invariant) object concepts
at the onset of vision (Wood, 2013; Wood & Wood, 2015). From an engineering perspective, this is an impressive computational feat:
computer vision systems typically require thousands to millions of diverse training images to build abstract object concepts. However,
this ability only emerges when newborn chicks are raised with objects that move slowly and smoothly over time (Wood & Wood,
2016, 2018). When objects move too quickly or non-smoothly, newborn chicks build inaccurate object concepts. Thus, to learn how
to perceive objects, chicks need experience with objects that adhere to the spatiotemporal properties of objects in the real world, akin
to human children (Smith & Slone, 2017). From a mechanistic perspective, these results indicate that newborn brains contain un-
supervised temporal learning mechanisms, which leverage the spatiotemporal characteristics of natural visual environments to build
object concepts. This machinery has been sculpted by evolution to generate abstract object concepts, but only when the brain receives
input from a natural visual world.

2.1. Newborn chicks as a model system for studying perceptual and cognitive development

Newborn chicks (Gallus gallus) are uniquely suited for studying the development of perception and cognition. Unlike commonly-
used animal models in psychology (e.g., rats, pigeons, and monkeys), chickens are a precocial species (mobile in the first day of life)
and can be raised in strictly controlled environments immediately after hatching. Newborn chicks can be raised for weeks in en-
vironments containing no real-world objects or agents (Wood, 2013). Thus, studies of newborn chicks allow us to test critical



S.M.W. Wood and J.N. Wood Infant Behavior and Development 57 (2019) 101329

hypotheses in the nativist—-empiricist debate. With chicks, we can discover mechanisms that are present in newborn brains, and
explore how those mechanisms are shaped by experience. While mechanisms found in chicks may or may not have also evolved in
humans (the last common ancestor of humans and chickens lived around 310 million years ago), these studies provide an existence
proof of the types of mechanisms that are present in newborn brains.

Moreover, recent work from avian neuroscience indicates that cortical mechanisms are largely conserved across birds and
mammals (reviewed by Jarvis et al., 2005; Karten, 2013; Shanahan, Bingman, Shimizu, Wild, & Gunturkun, 2013). At the circuit-
level, avian and mammalian brains contain homologous cortical circuits for processing sensory information; these circuits share
similarities in terms of cell morphology, the connectivity pattern of the input and output neurons, gene expression, and function. At
the macro-level, avian and mammalian brains share the same large-scale organizational principles: both are modular, small-world
networks with a connective core of hub nodes that includes prefrontal-like and hippocampal structures. Since cortical mechanisms
are shared across birds and mammals, studies of chicks can reveal general characteristics of vertebrate brain development. While
chicks have smaller brains than humans, this can provide an advantage to researchers. When attempting to understand a particular
phenomenon, it is often valuable to use the simplest system that demonstrates the properties of interest. The fields of neuroscience
and biology rely heavily on this strategy — for example, researchers use sea slugs to study the physiological basis of memory storage in
neurons (Kandel, 2007), worms to study the mechanisms of molecular and developmental biology (Brenner, 1974), and fruit flies to
study the mechanisms of genetics (Bellen, Tong, & Tsuda, 2010). In a similar vein, controlled-rearing studies of newborn chicks can
provide an important (and unique) perspective on perceptual and cognitive development. Next, we briefly describe non-automated
controlled-rearing studies with newborn chicks, with a focus on studies that had a significant influence on theories of cognitive
development.

3. Non-automated studies of newborn chicks

Controlled-rearing studies of newborn chicks have deep historical roots in developmental psychology (e.g., Gibson & Walk, 1960;
Vallortigara, 2012). The majority of these studies were designed to explore whether chicks have domain-specific knowledge in the
absence of post-natal experience with the domain." In support of this premise, researchers have reported that newborn chicks have
early emerging preferences for faces (Rosa-Salva, Regolin, & Vallortigara, 2010), biological motion (Vallortigara, Regolin, &
Marconato, 2005), and self-propelled motion (Mascalzoni, Regolin, & Vallortigara, 2010), all without prior experience with faces,
biological motion, and self-propelled motion. These findings have been interpreted as evidence for an innate (non-learned) me-
chanism for detecting animate agents. There have also been reports that newborn chicks have early emerging capacities for object
cognition (Regolin & Vallortigara, 1995) and numerical cognition (Rugani, Regolin, & Vallortigara, 2010), and that newborn
ducklings can perform abstract relational reasoning (Martinho & Kacelnik, 2016). Together, these studies have been interpreted as
strong evidence for nativist theories of cognitive development (Carey, 2009; Spelke & Kinzler, 2007; Vallortigara, 2012). Since there
was little to no opportunity for the animals in these studies to learn about objects, agents, and number prior to testing, empiricist
theories of cognitive development cannot readily explain these findings. Given the importance of these findings, it seems vital to
assess the precision of the measurements obtained in the studies. In all of the studies cited above, the chicks were tested in a two-
alternative forced-choice task, within a single session lasting a short period of time (generally ~ 6 min). This is a short measurement
period, so these studies tended to produce noisy measurements. In a sample of 10 non-automated controlled-rearing studies (Table 1),
we found that the average standard deviation (measurement error) was 33%, ranging from 17% to 65% across studies (Fig. 1A). To
illustrate how noisy of a measurement this is, Fig. 2 shows visualizations of distributions from noisy measurements (SD = 33%)
versus precise measurements (SD = 10%). Note that for the noisy measurements, a large proportion of the data falls both above and
below chance levels, hindering assessment of true population performance.

Furthermore, researchers often conclude that chicks succeeded at a task irrespective of whether the chicks performed above or
below chance levels (i.e., both familiarity and novelty effects are considered evidence for an ability), providing increased flexibility to
find an effect. Unfortunately, recent work from metascience shows that this combination of factors (noisy measurements and flex-
ibility in the direction of the effect) can easily lead to the perception of false effects (Loken & Gelman, 2017; Munafo et al., 2017;
Simmons et al., 2011).

When data are noisy, studies often produce estimates of performance that are considerably higher (or lower) than the true
population performance (Loken & Gelman, 2017). These inflated estimates of performance can significantly increase false positive
rates, especially when researchers have flexibility in terms of the number of subjects that are tested, the analyses that are performed,
and the results that are reported (Simmons et al., 2011). Inflated estimates of effect size lead researchers to underestimate the number
of subjects needed for appropriate statistical power, resulting in underpowered studies.?

A critic might argue that if studies produce statistically significant results despite having noisy measurements, then the results

! These studies generally do not assume a special ecological niche that would differentiate domain-specific knowledge in chicks from domain-
specific knowledge in other species. However, it is worth noting that chickens are a precocial species and may thus differ in some ways from
humans. For example, chicks can begin exploring their environment at the onset of post-natal experience. This active motor exploration might play
an important role in the development of perceptual and cognitive abilities.

2 Effect sizes measure the magnitude of an effect relative to the noise (e.g., for a one-sample t-test, Cohen's d = (mean — )/SD). Because the
denominator to compute d is standard deviation (SD), methods that produce larger standard deviations will have smaller effect sizes. Critically,
effect sizes and power are inextricably linked: smaller effect sizes require larger numbers of subjects to attain the same level of power (see Fig. 1C).
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asterisk are beyond the range of the graph (greater than 50% standard deviation or greater than 2.5 Cohen's d). Across a wide range of studies, the
effect sizes obtained with automated methods were much larger than the effect sizes obtained with non-automated methods. Automated methods
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true population performance values for studies with low measurement error (standard deviation = 10%) and high measurement error (standard
deviation = 33%). These standard deviations match those from our samples of automated and non-automated studies, respectively. Low mea-
surement error massively reduces the number of subjects needed to achieve adequate experimental power. When measurement error is high, small
decreases in true population performance require large increases in the number of subjects needed to achieve 80% power. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Illustration of an automated controlled-rearing chamber. The chambers contain no objects other than the virtual objects projected on the
display walls. Using microcameras embedded in the ceiling, we record chicks’ behavior 24/7 via automated image-based tracking software.

must be particularly robust (because it was possible to detect the effects despite the noise in the signal). However, researchers
typically have so many “researcher degrees of freedom” (flexibility in how they prepare, analyze, and report data) that statistical
significance can easily be found even in the absence of underlying effects (Simmons et al., 2011), even without multiple hypothesis
testing (Gelman & Loken, 2014). This problem is further exacerbated when data are noisy (Loken & Gelman, 2017). In other words,
statistical significance conveys very little information when measurements are noisy and researchers have high analytic flexibility
(for a detailed discussion see Gelman, 2018).

In sum, non-automated controlled-rearing experiments with newborn chicks tend to produce noisy measurements and small effect
sizes. Thus, these studies show two of the factors contributing to the replication crisis (Munafo et al., 2017). When researchers collect
a single short trial from subjects and have high analytic flexibility, then the resulting noisy measurements can masquerade as true
effects. A method that could produce precise measurements and large effect sizes would therefore improve the accuracy of controlled-
rearing studies. In the next section, we describe how automation can be used to produce precise estimates of performance from
newborn chicks, resulting in large effect sizes and more powerful experimental designs.

4. Using automation to increase the precision and power of controlled-rearing experiments

Historically, newborn chicks’ behavior has been measured through direct observation by trained researchers. This approach has
limitations: a researcher can typically observe only a single subject at a time, and these observations are susceptible to experimenter
bias. Experimenter bias can alter subjects’ behavior and the measurement of that behavior. In other fields-including physics, as-
tronomy, and chemistry-automation has been invaluable for minimizing experimenter bias in research procedures, while also re-
moving sources of noise by standardizing data collection procedures.

To apply these benefits of automation to controlled-rearing research, our lab developed a fully automated controlled-rearing
method (Wood, 2013). The method allows newborn chicks to be raised for weeks within automated controlled-rearing chambers. As
illustrated in Fig. 3, these chambers provide complete control over all visual object experiences. The chambers contain extended
surfaces only, and stimuli are presented to the chicks by projecting virtual objects on two display walls (LCD monitors) situated on
opposite sides of the chamber. Thus, the chicks’ visual object experiences are limited to the virtual objects projected on the display
walls.

All stimuli presentation, data collection, and behavioral tracking are performed by computers, allowing the chicks’ behavior to be
measured continuously (24/7). The chambers track each chick's location at the rate of 9 samples/sec, using micro-cameras and
automated image-based tracking software (EthoVision XT, Noldus Information Technology, Leesburg, VA, USA). Image-based
tracking operates over a digital recording of the animal's behavior, which maintains an objective view of events, allows analyses to be
repeated, and enables researchers to perform exploratory analyses of variables not originally considered.

This method also produces hundreds of hours of data per chick over their first few weeks of life. Accordingly, we can obtain
precise estimates of each chick's performance and determine whether each chick succeeded or failed at the experimental task.
Moreover, since the entire data collection process is automated, this method eliminates experimenter bias (e.g., bias that may occur
when coding the subject's behavior, presenting stimuli to the subject, or deciding whether to include the subject in the final analysis).

To quantify the benefits of automation, we compared the measurement error and effect sizes from representative samples® of
automated and non-automated controlled-rearing studies. For the automated studies, the average standard deviation was 10%
(Table 2; blue points in Fig. 1A), whereas for the non-automated studies, the average standard deviation was 33% (Table 1; red points
in Fig. 1A). Thus, automated studies produce measurements that are 3-4 times more precise than non-automated studies. Next, we
analyzed whether automated studies produce larger effect sizes (Cohen's d) than non-automated studies (for reference, d = 0.20 is

3 For our samples, we chose studies that used a two-alternative forced-choice test, sampled behavior during preselected measurement windows,
and did not use a training procedure. For the non-automated studies, we selected studies that have had an influence on theories of developmental
psychology (e.g., studies arguing for innate capacities for object, agent, and number cognition). For the automated studies, we selected the first 10
automated studies published from our lab with significant results. For both samples, we included all of the conditions reporting statistically
significant effects. In the Supplementary Data, we provide an Excel file that includes all of the data and calculations used to produce the mea-
surement error and effect size estimates across the samples.
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Fig. 4. Automation can significantly (A) increase the effect size and (B) decrease the measurement error of an experiment, by allowing large
amounts of data to be collected from each subject. For example, for Wood (2013) and Wood (2014), increasing the amount of data collected from
each chick increased the observed effect size by a factor of 4 and reduced the measurement error by a factor of 2.6. Thus, collecting more data per
subject significantly increases the precision of data, leading to high powered experiments.

considered small, d = 0.50 medium, and d = 0.80 large). We found that automated studies tend to produce very large effect sizes
(average Cohen's d = 1.43 in our sample, blue points in Fig. 1B). In contrast, non-automated studies produce small to medium effect
sizes (average Cohen's d = 0.37 in our sample; red points in Fig. 1B). Thus, automated studies produce effect sizes that are 3—4 times
larger than non-automated studies.

To better understand why automation improves measurement precision, we re-analyzed previously published data from our lab.
In the analysis, we tested how the inclusion of more data per chick influenced the observed effect size for the first two studies
published from our lab (Wood, 2013, 2014). As shown in Fig. 4, when only 12 min of data were analyzed per chick (the first 6 min of
2 trials = 12 min of data per subject), the average Cohen's d hovered in the medium range, d ~ 0.5. When we increased the data to
include a full day of these shortened trials (the first 6 min of 24 trials = 144 min of data per subject), the average Cohen's d rose to
d ~ 1.1. When we included all of our available data (20 min trials X 24 trials per day x 7 days = 3360 min of data per subject), the
average Cohen's d rose to d ~ 1.9. Thus, increasing the amount of data collected per chick reduced the measurement error by a factor
of 2.6 and increased the effect size by a factor of 4.

In addition to improving experimental accuracy, another benefit of reducing measurement error is that fewer subjects are needed
to detect an effect. While the standard recommendation in response to the replication crisis is to increase sample size, statisticians are
now suggesting that an even better focus is to improve the quality of measurements (reviewed by Gelman, 2018). Mathematically,
reducing measurement error by a factor of 3 is as good as multiplying the sample size by 9.

To illustrate this effect, we computed the sample size needed to obtain 80% power for a range of “true” population performance
magnitudes (Fig. 1C; Champely, 2015). Automated methods that produce precise measurements (SD = 10%) require far smaller
numbers of subjects for 80% power than non-automated methods that produce noisy measurements (SD = 33%). For example,
achieving adequate power to detect a true population performance of 58% (chance = 50%) with automated methods requires 15
chicks, while detecting the same effect with non-automated methods requires 136 chicks!

While automated controlled-rearing methods cannot be applied to human subjects, the principle of increasing the precision of
measurements need not be unique to studies of newborn chicks. Methods that reduce statistical noise can improve the effect sizes and
power of infant studies as well. For example, automated methods using tablets and head-mounted eye tracking may allow researchers
to collect more data from each subject, while reducing experimenter bias in the data collection process.

5. Automation allows individual-level statistical analyses

After collecting a single, short trial from each chick, experimenters can compute a group-level measure of average performance.
However, this group-level statistic does not tell us whether all of the chicks had the ability of interest or whether just a subset of the
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chicks had the ability. In fact, studies with noisy measurements typically find that a large proportion of the subjects performed in the
opposite direction of the reported effect (Fig. 2). This is problematic from a theoretical perspective because if an ability is foundational
to perception and cognition, then it should be present in most — if not all — newborn animals (provided we have sufficiently precise
methods to detect the ability).

Automated testing provides a direct solution to this problem. By collecting hundreds of hours of data per chick, automation allows
researchers to obtain precise measurements of each subject's performance and assess whether each chick performed above (or below)
chance level (e.g., Wood, 2013, 2017). With massive amounts of data from each chick, these individual-level analyses are often highly
powered: many reach 5-sigma levels of statistical significance (the statistical threshold for new discoveries in theoretical physics) for
individual subjects.

Another benefit of individual-level analyses is that each subject can serve as a replication of an effect. If we consider an ex-
periment as being on an individual level (rather than group level), then each subject provides an opportunity to replicate an effect.
Experiments at the individual level are only possible with enough measurements from each subject to reliably reject or fail to reject
the null hypothesis for each individual. Thus, automation permits individual-level internal replications.

Individual-level analyses may also be possible in studies of infants and toddlers. Online methods of testing allow children to
participate in studies without having to continually travel back and forth to a physical laboratory. By recruiting infants and toddlers
for multiple testing sessions, researchers of human development can also examine variation between individuals and use individual-
level analyses as internal replications of an effect.

6. Eliminating analytic flexibility through preregistration and automation

Our paper has focused largely on improving measurement error and effect sizes. However, combating the replication crisis also
requires reducing analytic flexibility (“researcher degrees of freedom”) in experimental designs. For example, researchers can (1)
engage in flexible data collection (e.g., continuing to collect data until the results reach statistical significance), (2) perform a range of
analyses and report only those analyses that reached statistical significance, and (3) continue to test a hypothesis with slight
methodological changes until a statistically significant result emerges, then frame the failed attempts as limits to the phenomenon
(Peterson, 2016). These research practices dramatically increase false-positive rates (Simmons et al., 2011).

The most direct way to combat these problems is to preregister the design and analyses of experiments. Preregistration requires
researchers to describe, in as much detail as possible, their plans for the study (e.g., number of subjects, stimulus materials, pro-
cedures, measures, rules for excluding data, plans for data analysis, predictions/hypotheses) and to post those plans in a time-
stamped, locked file in an online repository that can be accessed by editors and reviewers (and, ultimately, by readers). By forcing
researchers to make these decisions before collecting data, preregistration minimizes researcher degrees of freedom and reduces the
probability of obtaining false-positives.

Automation can also be useful for combating experimental and analytic flexibility. To provide an example, our lab recently started
automating data analysis procedures. We first create an R script of the analyses we plan to run, then use that script to analyze the raw
data from the animal tracking computer. Thus, we formalize the statistical tests we plan to run before looking at the data. For each
experiment, we then create a “reproducibility package” containing the R script and raw data. Running the package automatically
reproduces the statistical analyses from the raw data. We are also starting to automate replication procedures, by creating “re-
plication packages” containing all of the stimuli, materials, and code needed to replicate our experiments. Running the package
automatically recreates all of the stimuli presented to the chicks, in exactly the same order as the original experiment. In the future,
we plan to begin making these reproducibility and replication packages openly available to researchers (e.g., by posting them on our
lab website), helping contribute to a culture of transparent and reproducible research. Automated data analysis procedures could also
be used by laboratories that study infants and children to improve the reproducibility of statistical analyses.

7. Conclusion

A central goal in science is to produce robust and reproducible research. One strategy for improving reproducibility is to reduce
measurement error (Gelman, 2018). In this paper, we show how automation can reduce measurement error by ~60% in controlled-
rearing studies of newborn chicks. Specifically, automated controlled-rearing studies produce measurements that are 3—4 times more
precise than non-automated studies and produce effect sizes that are 3-4 times larger than non-automated studies.

Our paper focuses on controlled-rearing experiments, but this strategy — which emphasizes improving measurement precision —
could also be useful for other areas of developmental psychology. In response to the replication crisis, developmental psychologists
have tended to focus on other strategies (e.g., increasing sample size, preregistration, open data policies, and performing exact
replications). We agree that all of these strategies are valuable, but we suggest that researchers should be especially focused on
reducing the amount of noise in their data.

How can researchers improve measurement precision in their experiments? One straightforward strategy is to collect more data
from each subject. We found a strong positive correlation between the amount of data collected from each subject and the precision of
the measurements (Fig. 4). This correlation is not limited to studies of non-human animals. Analyses of infant looking time designs
have revealed that including more trials per infant can also result in large increases in statistical power (DeBolt, Rhemtulla, & Oakes,
2019). Moreover, by collecting more data per subject, researchers can determine the homogeneity or heterogeneity of their effects
across infant and toddler populations.

Many researchers in developmental psychology are already moving in this direction. For example, while it is not possible to
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experimentally test human infants 24/7, new automated internet-based platforms, such as “Lookit”, allow families to participate in
behavioral studies via webcam (Scott, Chu, & Schulz, 2017; Scott & Schulz, 2017). Thus, researchers can begin recruiting larger
numbers of infants and collecting repeated measurements. There is also growing use of automation to track infants’ eye movements
(Smith, Jayaraman, Clerkin, & Yu, 2018) and language acquisition (Roy, Frank, DeCamp, Miller, & Roy, 2015). Roy and colleagues,
for example, used automation to collect more than 200,000 h of audio and video recordings from all of the rooms in a child's house,
providing a detailed case study of the emergence of language.

Robust, replicable findings are vital for formulating and evaluating scientific theories. We conclude that automation can be a
powerful tool for combating the replication crisis and improving the precision of scientific measurements in developmental psy-
chology. Precise measurements make it easier to detect true effects, reduce the probability of detecting false effects, and decrease the
number of subjects needed to achieve adequate power. Automated methods also protect against experimenter bias, enable individual-
level statistical analyses, and allow replications to be performed quickly and easily.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.infbeh.2019.
101329.
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